Último capítulo sobre ángulos complementarios

Ángulos complementarios

Definición del ángulo complementario

Los ángulos complementarios son pares de ángulos con una cantidad de 90 grados. Cuando hable de ángulos gratuitos, recuerde siempre que los ángulos aparecen en pares. Un ángulo es el complemento de los otros ángulos.

Aunque un ángulo recto tiene 90 niveles, no se puede llamar un cumplido porque no aparece en pares. Es solo un ángulo completo. Tres ángulos o incluso más ángulos cuya cantidad asciende a 90 niveles tampoco pueden llamarse ángulos correspondientes.

Los ángulos complementarios siempre tienen procedimientos favorables. Se compone de dos ángulos agudos que miden menos de 90 grados.

Los casos comunes de ángulos complementarios son:

  • Dos ángulos determinan 45 niveles cada uno.
  • Los ángulos son determinantes de 30 y 60 niveles.
  • Ángulos que miden 1 grado y también 89 grados.

Los ángulos complementarios y también los ángulos complementarios se especifican con respecto a la mejora de dos ángulos. Si la cantidad de dos ángulos es de 180 grados, son ángulos suplementarios, lo que crea un ángulo lineal colectivamente. Sin embargo, si la suma de dos ángulos es de 90 grados, después de eso, se dice que son ángulos complementarios y desarrollan un ángulo ideal entre sí.

Cuando las secciones o líneas de dos líneas se encuentran en un factor específico (llamado vértice), se crea un ángulo en el punto de unión. Cuando un rayo gira alrededor de su punto final, entonces el paso de su giro en las instrucciones en sentido antihorario es el ángulo desarrollado entre su ubicación inicial y final.

Ángulos suplementarios

Cuando la cantidad de dos ángulos es 180 °, los ángulos se denominan ángulos suplementarios. Si dos ángulos se acumulan para formar un ángulo recto, esos ángulos se describen como ángulos adicionales.

Ambos ángulos forman un ángulo directo, de modo que si un ángulo es x, el otro el ángulo es 180– x. La linealidad aquí confirma que las propiedades residenciales de los ángulos continúan siendo las mismas. Tome los ejemplos de razones trigonométricas como;

Transgresión (180– A) = Incorrecto A.

Cos (180– A) = – Cos A (el cuadrante está alterado).

Tan (180– A) = – Tan A.

¿Cuáles son los ángulos correspondientes? Dar un ejemplo.

Cuando la cantidad de 2 ángulos es igual a 90 grados, se denominan ángulos complementarios. Por ejemplo, 30 niveles y también 60 grados son ángulos complementarios.

¿Qué son los ángulos suplementarios? Dar ejemplos.

Cuando la cantidad de acción de 2 ángulos asciende a 180 grados, se denominan ángulos suplementarios. Por ejemplo, 70 grados y 110 niveles son adicionales.

¿Cómo encontrar los ángulos correspondientes?

Dado que el número de ángulos correspondientes es igual a 90 grados, si conocemos la acción de un ángulo, podemos encontrar rápidamente el ángulo desconocido.

Por ejemplo, si entre los dos ángulos hay 45 niveles, después de eso;

x + 45 = 90

x = 90–45 = 45 °.

¿Cuál es el ángulo complementario de 40 niveles?

El ángulo correspondiente de 40 niveles es.

90–40 = 50 grados.

¿Cómo descubrir ángulos suplementarios?

Para encontrar el ángulo suplementario a un adicional ángulo, reste el ángulo proporcionado de 180 niveles.

Por ejemplo, si un ángulo tiene sesenta grados, un ángulo adicional es 180–60 = 120 niveles.

Dejar un comentario